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The Grassberger-Procaccia (GP) empirical spatial correlation integral, which 
plays an important role in dimension estimation, is the proportion of pairs of 
points in a segment of an orbit of length n, of a dynamical system defined on 
a metric space, which are no more than a distance r apart. It is used as an 
estimator of the GP spatial correlation integral, which is the probability that 
two points sampled independently from an invariant measure of the system are 
no more than a distance r apart. It has recently been proven, for the case of an 
ergodic dynamical system defined on a separable metric spaceythat the GP 
empirical correlation integral converges a.s. to the GP correlation integral at 
continuity points of the latter as n--, o~. It is shown here that for ergodic 
systems defined on 91 '1 with the "max" metric the convergence is uniform in r. 
Further, a simplified proof based on weak convergence arguments of the result 
in separable spaces is given. Finally, the Glivenko-Cantelli theorem is used to 
obtain ergodic theorems for both the moment estimators and least square 
estimators of correlation dimension. 

KEY WORDS: Glivenko-Cantelli theorem; fractal; almost sure convergence; 
moment estimators; least square estimators: dynamical systems; chaos. 

1. I N T R O D U C T I O N  

Let  it be  a p r o b a b i l i t y  m e a s u r e  on  the  Bore l  sets  ~ o f  a m e t r i c  space  (X, p). 
Set S . =  {(x,  x'  ) E X x X:  p( x,  x '  ) <~ r } . T h e  Grassberger-Procaccia  ( G P ) 

spatial correlation hltegral C(r)  o f / z  is de f i ned  to  be 1131 

C(r)  = / t  x/1(S,.) (1) 
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where the measureabili ty of  S,. relative to the product  a-field follows from 
the continuity o fp .  Clearly, C(r) is the probabil i ty that two points sampled 
independently from It are no more  than a distance r apart.  Let T be a 
measure preserving t ransformation with respect to/z .  Put  x,, = T(x,,_ ~) = 
T~"~(Xo) for some x o e X, where T ~'' is the nth-fold composi t ion of  T with 
itself and let 

l ,'a I 

/t;]~ = n k~ ~ 0.,.,. (2) 

where 0, is the unit point mass at x. The GP empirical spatial correlation 
integral C,,(r; xo) is given by 113~ 

C,,(r; " .,-o .,-u Xo) =Iz,, x/l,, (S,.) (3) 

C,,(r; Xo) is the probabil i ty that two points selected with replacement from 
the first n points of  the orbit  of  Xo are no more  than a distance r apart.-" 
The main result of  this paper  is the following Glivenko-Cantel l i  theorem. 

If  X_~ 91 ' / a n d  p is the "max" metric, then ergodicity T h e o r e m  1. 
implies 

lim sup IC,,(r; x o ) -  C(r)[ = 0  (4)  
i t  ~ ~r_ r 

a.s. lt. 

Correlat ion integrals arise in the empirical studies of  dynamical  
systems. One objective in such studies is the estimation of  invariants of  a 
system from the observat ion of  time series produced by itJ 91 These, in turn, 
are used to characterize the system. A popular  invariant to estimate is the 
correlation dinwnsion v, ~ TM which is defined by 

v =  lim log C(r) (5)  
,.~o+ l o g r  

whenever the limit exists; it is undefined otherwise. (For  a recent review of  
dimension estimation, see Cutler. ~6~) The above result is used to obtain 
ergodic theorems for the moment  estimators and s tandard least square 
estimators of  correlat ion dimension. Only  the p roof  of  the almost  sure con- 
vergence of  the moment  estimator,  with p = 0 (see Lemma 1 ), makes use of  

-" Sometimes the GP empirical correlation integral is defined to be the probability that two 
points selected without replacement from the first n points of the orbit are no more than a 
distance r apart. The difference in these two quantities is O(11 ~). Hence the conclusions of 
this paper apply equally to either. 
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the uniformity of the convergence of C,,(r; Xo) to C(r). It is shown that 
moment and standard least square estimators converge almost surely to v, 
under the conditions of Theorem 1, if and only if there exist positive con- 
stants c and re such that 

C(r) = cr" if r~<r o (6) 

This property is called exact  scaling. The necessity of exact scaling is a 
weakness of these estimators. In ref. 18 it is shown how to modify the least 
square estimators to obtain an estimator of correlation dimension which is 
consistent under the assumption of the existence of v. 

The choice of metric space in Theorem 1 is that most often encoun- 
tered in practice. The primary reason for using the "max" metric instead of 
the Euclidean metric is that a fast algorithm ~1~ exists for computing 
C,,(r; Xo) in this case, while there is no price to pay for this convenience 
since the correlation dimension is the same in either case. 

Often one is concerned with the image of a segment of an orbit under 
some function, rather than the orbit itself. Theorem 1 can easily be 
generalized to this setting. To do so, let (/2, ~ , m ,  S) be a dynamical 
system and let ( Y, r) be a metric space. Take h measurable from g? to Y. 
The GP spatial correlation integral of mh-~ is given by 

C(h)(r)  = m h - i  x mh 1(S',.) (7) 

where S ' , = { ( y , y ' ) e Y x Y : r ( y , y ' ) < ~ r } .  Put cok=S(k) (coo)  for some 
(oo s /2  and Yk = h(~ok), k = 1, 2 ..... The sequence { y~.} is the image of the 
orbit of roe with respect to h. set 

1 " -  l I "-- 
m,, '"h-  J = -  ~ O,,,kh - j  = -  ~ O,.. (8) 

ll k = 0  n k = O  

The empirical GP spatial correlation integral for the image of the orbit is 
given by 

{ O I l  - -  | I --,,c'lhlCr " ,  , ~0o)= m;,~ -I xm,, h (S,.) (9) 

The modification of Theorem 1 is as follows. 

T h e o r e m  2. If Y= 91 d and r is the "max" metric, then ergodicity of 
(f2, .7, m, S) implies 

lira sup IC~,['~(r; COo) - C~m(r)l = 0  (10) 

a . s . m .  
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Theorem 2 is of particular value in the understanding 16' 7) of the OP 
phenomena. (~5) In that case,/2 = C[O, ~) ,  S is the left shift, and h is a finite 
dimensional projection. 

A result [ 17] in the same direction as Theorem I is the following, 

T h e o r e m  3 3 If (X, p) is separable, then ergodicity implies 

lim C,,(r; Xo) = C(r) ( 11 ) 

a.s. It at continuity points of C(r). 

In addition, Aaronson el al. ~ used a weak convergence argument to 
show that C,,(r; Xo) converges to C(r) a.s. # at continuity points of C(r) 
whenever X___~ ~. In fact, as shown here, this argument yields a simple 
proof of Theorem 3 and ties this result to a large literature on almost sure 
weak convergence. 

The question of uniform convergence when (X,p)  is separable is 
unanswered unless C(r) is a continuous function. However, C(r) need not 
be continuous. There are two ways in which discontinuities can arise when 
the "max" metric is used. First, under the assumption of ergodicty, C(r) 
will be discontinuous i f#  is supported on a finite set. In this case, a simple 
combinatoric argument yields Theorem 1. The other way in which discon- 
tinuities can arise is if # assigns positive mass to parallel hyperplanes. The 
following two examples show that such a measure can be an invariant 
measure of an ergodic system. In fact, the second example is Bernoulli. 

Example 1. Let X~={O, 1}. 

01 if x =  1 
T l ( x ) =  if x = 0  (12) 

lt~= 1/2(80 + 8,) and and let ([ 0, 1 ], M, #2, T,) be a weak-mixing dynami- 
cal system. Set X = X j  x X 2, T =  T~ x T,_, and i t=ltl  xfl2. The ergodicity 
of the product dynamical system follows from the weak mixing of the 
second factor and the ergodicity of the first factor. It is easy to show that 
C(r) for the product system has a discontinuity at r =  1 with jump size 
equal to 1/2. This construction can be used to obtain ergodic dynamical 
systems in any dimension greater than 1 with correlation integrals with a 
finite number of discontinuities. 

3 The statement of this theorem conforms with the proof in ref. 17. not the statement given 
there. 
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Example 2. Let Z = [ 0 , 1 ) ,  T~(z )=2z  m o d  1, and ll~ be the 
Lebesgue measure  on the Borel sets of  Z. It is well known that  the part i-  
t ion {[0,  1/2), [1/2, 1)} is Bernoulli  for this dynamica l  system. Let 

Z,, = [ 1 - 1 /2"-  1 1 - 1/2") 
(13) 

X,, = [0, 1/2"), n = 1, 2 .... 

Define X = U;~= t ( X,, x { 1 /2"-  i} ) and q~ I Z ---, X by 

(p(z) = (z - q)o(z), 1 - rpo(z )) (14) 

where ~00(z) = 1 -Y~,, 1/2"-  IIz,,(z). Here q~ - t  I X--+ Z is given by q~ - I(.x" I , x 2) = 
.xl + 1 - x 2 .  Let TIX--+ X b e  given by T = ~ 0 r  T I .,c,o -1 and define it on the 
Borel sets of  'Yt 'l restricted to X by IL = l t ,  ~o- 1. By construct ion,  the second 
system is metrically i somorphic  to the first; therefore it is Bernoulli. 
Fur ther ,  the second system has a corre la t ion integral with discontinuities at 
I"= 2 - "  of  size 4 - " ,  17 = 1, 2 ..... 

Finally, Denker  and Keller  18~ have shown for certain weak Bernoulli  
dynamica l  systems in 'Jt '1 that  

, /g  [ c,,(,-; Xo)- c(,-)] (15) 

converges  weakly to a no rma l  distr ibution for each r. 
The  paper  is organized as follows. The  ergodic theorems for the 

es t imators  of  correlat ion dimension are stated and proven  in the next 
section. The proofs of  Theo rems  1-3 are given in Section 3. 

2. ERGODIC T H E O R E M S  FOR THE E S T I M A T O R S  

2.1. Background 

The following definitions are needed below. For  any distr ibution func- 
t ion F(r) and real r ' ,  such that  F(r ' )> 0, define the t runcated distr ibution 
function with t runcat ion  point  r ' ,  F ( r l r ' ) ,  by 

,, f F(,')/F(r') if 
F(rlr ~=~1 if 

and the quanti le  function F - ~  by 

F - l ( u )  = inf{ x E ~ = F(x) >1 u}, 

F - l ( 0 ) =  lim F- I ( e )  
t : ~ 0  + 

r ~ r '  
(16) 

r > r '  

0 < u ~ < l  (17) 

(18) 
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The following corollaries, which are standard results in the empirical 
process literature, will be used in the proofs of this section. They are stated 
for completeness. Theorem 1 and the fact that C,,(r; Xo) and C(r) are dis- 
tribution functions imply that C,,(r; xo) converges weakly to C(r) a.s. lt. 
Therefore one has the following. 

Corollary 1. Under the assumptions of Theorem 1, 

,,lira f(r)  dC,,(r; Xo) = f(r)  dC(r) (19) 

a.s. ll for all f which are bounded and continuous on the support of 
dC(r). 

Corollary. 2 Suppose that C(r) is strictly increasing for s < r < t .  
Then under the assumptions of Theorem 1, 

l im s u p  I C,7'(u; Xo) - C - ' ( u ) l  = 0 (20) 
It ~ ,~J It I ~ tt ~ t t  2 

a.s. ll, where C(s)<u~<u2<C(t) .  Further, i f - ~ < s < t < o v ;  C(s')=O, 
s' <s,  and C(t)= 1, then Eq. (17) holds with u~ = 0  and uz = 1. 

This is a consequence of Theorem 1 and the uniform continuity of 
C - l  on [u, ,  u,_]. 

2.2. M o m e n t  E s t i m a t o r s  

Suppose that the GP spatial correlation integral satisfies 

C(r)=a(r)r  ~', 0~<r~<r o (21) 

for some r o < 0, where a(r) is a slowly varying function, i.e., lim,._o+ a(tr)/ 
a(r) = 1, t > 0. Set 

fffi 
' d C ( r l  I" " r') if p > 0  

M(p [r') = ' l ~  Jr') if p = 0  
(22) 

The slow variation of a(r) is equivalent to the existence of the following 
limit 

M ( p ) =  lim M(plr ' ) ,  p~>0 (23) 
r '  4 0  + 
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(See Theorem 1 ref. 11, p. 281.) Under the assumption of slow variation, 
it can be shown c-'~ ~9~ that 

= f p M ( p ) / [ 1 - M ( p ) ]  if p > 0  (24) 
v [ - 1 / M ( p )  if p=O 

The first step in this estimation procedure is to approximate v by 

f l (pl r ' )  = f ~pM(plr')/[, 1 
[ - 1 / m ( p l r  ) 

if p > 0  
(25) 

if p = 0  

for some 0 < r' ~< ro. The second step is to estimate fl(p [ r') by 

�9 . .t ~,t 
fl,,(p;xolr,)=~pM,(p,.xoll. ) /[1-M,,(p;xo] )] if p > 0  

�9 . J [-1/M,,(p,.Xol~) if p = 0  
(26) 

where 

I f '  I" P (-~) ('C,,(,'~ Xo,,"  ) 

M,,(p; xolr')= , (r) 
log ~ dC,,(r;xol r') 

if p > 0  

if p = 0  

(27) 

Takens ~9~ was the first to propose fl,,(p; Xo[ r') with p = 0 as an estimator 
of v. However, he only considered the special case of exact scaling. Further, 
he did not consider its almost sure limit under reatistic assumptions on the 
dynamics�9 Wells et al. c2~ were the first to consider the case of p >  0. They 
were able to find almost sure limits under strong mixing, for a slightly 
modified estimators, which are based on two independent orbits of the 
dynamical system. With Theorem 1 it is possible to obtain the almost sure 
limits under ergodicity. 

Lemma 1. Under the conditions of Theorem 1, if p > 0 ,  or p = 0 ,  
v > 1, and C(r) is continuous in a neighborhood of the origin, then 

lim fl,,(p; Xo I"') = f l (plr ' )  (28) 
I1~ oc 

a.s. ~. Further, p,,(p; xolr ' )  converges to v a.s./l if and only if C(r) satisfes 
exact scaling and r 4  r 0. 

The condition v>  1 only assures the continuity of C(r) at the origin. 
Example 2 shows that there are correlation integrals which are continuous 
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at the origin, but not continuous in any neighborhood of the origin. Hence, 
continuity in a neighborhood of the origin does not follow from ergodicity 
and v > 1. 

that 
Proof  o f  Lemma 1. If p > 0 ,  it follows immediately from Corollary 1 

lira M,,(p;xo[ r ' )=M(p[ r ' )  (29) 

a.s.p. Therefore 

lim fl,,(p; x0 [ r') = fl(p I ,") (30) 

a.s./~. 

On the other hand, note that log r is not bounded on (0, ro); therefore, 
if p = 0 ,  Corollary 1 cannot be used to obtain the almost sure limit of 
M,,(p; Xofr'). Instead, Corollary 2 will be used to show that 

r '  r '  

lim fo log ," dC,,(r; Xo I r ' )=  fo log r dC(r [r') (31) 

a.s.p. Two changes of variables and the concavity of log x give 

r I r' 

;o log r dC.(r; Xo J r ' ) -  fo log r dC(r[r') 

=j.l [log C,7~(U; Xolr ' )- log C- l (u lr  ' ] du 
0 

<~log[f~C'sJ(u;x~ (32) 

It follows from Theorem 1 that C,,(r; Xo]r') converges uniformly to C(r[ r') 
a.s.p. This, together with the assumed continuity of C(r) near the origin 
and the slow variation of a(r), implies that C,Ta(u; xorr') and C-~(ulr ') 
obey the conclusion of Corollary 2 over [0,1]. Further, v> 1 implies 
that 

'o 1 C-*(ulr,) du < ~ 
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Therefore one has 

f~C-'(U;xolr') L 
l im  e C_t(ulr, ) du-1 

= ,,lim_-. I~ C'7 t(u; x~ I r ')C_ l(u [ r, ) -  C - l ( u  [ r') du 

~< lim sup IC,71(U;xolr')-C-'(ulr')l 

x C_l (u l r ,  ) = 0  (33) 

a.s.p. This completes the proof of the first part of the lemma. 
Clearly, if C(r) satisfies exact scaling, then fl(p ]r') -- v, p/> 0, if r' ~< ro. 

Therefore the moment estimators converge to v a.s. p ifr' <~ %. Next, suppose 
that fl,,(p; xolr') converges to v a.s. p ifr '  ~<ro, that is,/~(p I r') = v ifr '  ~<ro, 
p >/0. Then the definition of p(p I r') yields, after some manipulation, 

,., 
C(r') r 'p = (v + p) fo rp - IC(r) dr (34) 

i" ~< %, p >/0. The right-hand side is differentiable, therefore one has 

dC(r') 
= vC(r') (35) 

d l  J 

r'~< ro. This equation has the solution 

C(r) = crv (36) 

if r~< ro, where c is a positive constant. This completes the proof. 

2.3. Standard Least Square Estimators 

Suppose that the GP  spatial correlation integral satisfies 

C(r) = a ( r ) r "  (37) 

with l im~o§ log a(r)/log r = 0 .  A standard least square estimator of v is 
given by 

9,,(r; x o) = v + d (r )  + e,,(r; x o) ( 3 8 )  

822/85/1-2-3 
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where d(r) is the asymptotic bias, which is given by 

d ( r )=  ~. v(r,)(x,-g)/S,.,. (39) 
i = l  

and e,(r; Xo) is the random error, which is given by 

e,(r; Xo)= ~ [log C,(ri; Xo)-log C(ri)](x~-Y:)/S,.,. (40) 
i = l  

and 

r e ~ " '  (41) 

xi = log ri (42) 

2 = -- x/ (43) 
m i = l  

v(r) = log a(r) (44) 

S 1 ~ (xi_Y)2 (45) 
.X-A" ~ - -  

m i = !  

with 

c j " ' =  { ( r l  ' r2 ..... r,.) E (0, oo)"': 

r; :~ rj for some iPj,  i , j= 1, 2 ..... i11} (46) 

The estimator is the slope of the least square line fit to the points 

(log ri, log C,,(ri; Xo) ), i = 1, 2 ..... m (47) 

As is seen in the next two results, the choice of points to which the line is 
fit will effect the asymptotic accuracy of the estimator, unless exact scaling 
is satisfied. 

kemma 2. 1. d(r)=O for a l l r ~ a J  "'withmaxl<~i<,,,ri<~r0,m=2, 
3 ..... if and only if for some positive constant c 

C(r)=cr" if r<~ro (48) 

2. lim)._o+ d(2r) = 0  for all r e @ " ,  m = 2 ,  3 ..... if and only if a(r) is 
slowly varying. 
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3. Take  r > 0  and 0 < s < l .  F o r  each m, let rC"~=(s"'r,s"+~r ..... 
s 2 . . . .  lr). Then 

lim d(r~"'l) = 0 (49) 
?/i ~ oc 

Proof. 1. If  C(r) satisfies exact scaling and max~ ~<i~<,, ri ~< r o, then it 
is easily shown that  d ( r ) = 0 .  Next  suppose  that  d ( r ) = 0  for any r ~ " ' ,  
with max~ <~<~,, r~ <~ to. Let 

k 

.~k = Y'. x , / k  (50) 
i = ]  

Ai, k = X i - - 2  k ( 5 1 )  

i = 1, 2 ..... k; k = 2, 3 ..... m. In this nota t ion,  

d(r) = ~ v(ri) A/. , , ,=0 (52) 
i = 1  

Note  that  

= I A i  ..... ~+[ .~ . , _~ -x . , ] /m  if i = 1 , 2  ..... m - 1  
di .... L ( m -  1)[Xm--.~ .... l ] /m  if i = m  

( 5 3 )  

Subst i tut ion of Eq. (53) into Eq. (52) gives 

m--  1 

v(rA zJi, m = ~ V(l'i) Ai ..... I 
i = 1  i = l  

+ i~= 1 v(ri)[~f . ,_l--x . ,]+v(r . , ) (m--1)[x, , , - - .~ .... 1] in 

--  I ra--  I 
- - i _ ~  I D(Fi)[ ' .~;  . . . .  I - - X m ]  "~l)(rm)(11"l--l)[Xm---~m-I]}/rtl 

= 0  (54) 

It immediate ly  follows that  

m - -  1 

v(r,.) = 2 
i ~ l  

v(ri)/(m -- 1 ) (55) 
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The right-hand side does not  depend on r,,, if max~ <.~<.m l ' i~  ro. Therefore,  
the left-hand side is constant  for r,, <<. r o. Hence C(r) satisfies exact scaling. 

2. If a(r)  is slowly varying, then for any r ' >  0, 

lim d ( 2 r ) =  lim ~ v(2ri),~i.,, 
) ' ~ 0 +  2 ~ 0 +  i = 1  

= ~ lim 
) . ~ 0  + i = l  

[ v(2ri) - v(2r ' )]  Ai,., 

= ~ lim 
2 ~ 0  + i = l  

log[ a(2ri)/a(2r') ] A i .... 

= 0  (56) 

Next suppose that lim)._o+ d ( 2 r ) = 0  for any r e ~" ' ,  m = 2 ,  3 ..... Then  con- 
siderations similar to those leading to Eq. (55) give 

m -  1 

lim ~. log[a(2ri)/a(2r,,,)]=O (57 
2 - - 0  + i = 1  

This is equivalent to 

lim a(2r l )  a(2r2) a(2r,,,_l) 
~.-o* a(2r,,,) a(2r , , , )""  a(2r, ,~ - 1 (58 

This equat ion is invariant under  the interchange of  indices; therefore 

lim a(2rl)  a(2r2) a(Xr,,,_2) a(2r,,,) 
;.-o+ a(2r .... 1)a()~r,,,_l) a(2r, ,_t)a(2r, , ,_t)  

= lim a ( 2 r l ) a ( 2 r 2 )  a(2r, , ,_l)(a(2r, , , )  "~"' 
).-o+ a(2r,,)a(2r,,,)"" -c~2~',,,; \ a ~ - - _ l ) J  

( ),,, 
=).-o+lim \ a ~ t )  

= 1 (59 

Hence, lim). _ o + a(2r, ,)/a(2r, , ,_ t) = 1 for any i) > 0, j = m - 1, m. Therefore  
a(r)  is slowly varying. 

3. See Cutler. ~5~ 
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Lemma 3. Under the conditions of Theorem I, 

lim 9,,(r; Xo) = d(r) + v (60) 

a.s. /t. Further, O,,(r; Xo) converges to v a.s. /t if and only if C(r) satisfies 
exact scaling and maxt <.i<.,, ri<~ ro. 

Proof  One has 

lira e,,(r; Xo) = lira ~ [log C,,(ri; x o ) - l o g  C(rs)](x~-.g)/S,.,. 
n ~ o c  n - -  o c  i = 1 

= ~ lim [log C, , ( r~;xo)- log  C(ri)](xi-.~)/S,._,. (61) 
i =  | I 1 ~  ,~r 

By Theorem 1 and the continuity of log x, one has 

lira [log C,,(ri; X o ) - l o g  C(ri) ] = 0  (62) 

a.s. ,u. Therefore 

lim 9,,(r; Xo) = d(r) + v + l im e,,(r; Xo) 

= d(r) + v (63)  

a.s. lt. This completes the proof of the first part of the lemma. 
The second part of the lemma follows from the first part and Lemma 

2, part 1. This completes the proof. 

R e m a r k  1. Exact scaling of C(r) is not sufficient for either the 
moment estimators or the standard least square estimators to be strongly 
consistent. One must also know 1"o. In practice, this is unlikely to be the 
case. Consequently, even in this, the best-behaved case, modifications to 
these estimators are needed to make them consistent. 

R e m a r k  2.  Without any assumption on a(r) one has under the con- 
ditions of Lemma 3, 

lim lim ^ '-~"')" v,,~r , Xo) = v + lim d(r I''~) 

+ lim lim e,,(r~"'; x0) 
m ~ ~ t !  ~ 7 5  

= v (64) 
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In ref. 18 it is shown how the limits in (64) may be taken simultaneously 
to yield a consistent estimator of v without additional assumptions on C(r) 
beyond the existence of v. However, the assumption of ergodicity is 
strengthen to the weak Bernoulli mixing and the almost sure limit is 
weakened to a limit in measure. 

3. T H E  P R O O F S  

Proof of Theorem 1. First note that C,,(r; Xo) and C(r) are distribu- 
tion functions. Therefore it suffices to show that C,,(r; Xo) converges to C(r) 
a.s. /t for each r and that C , , ( r - , x o ) = l i m , ~ o +  C,,(r;xo) converges to 
C( r -  ) = l im,_ o+ + C(r - e) a.s./~ for each r. The uniformity will follow from 
the Glivenko-Cantelli theorem for distribution functions (ref.4, pp. 275-276). 

In what follows fix r. It will be convenient to write 

c , ( , ;  -.o) - -- . ,:0 I s , ,  •  
�9 r 

A vertical section of S,., - " -  - " = S,.-B~(.x), where B,(x) {x' ~ a :  p(x,x')<~r} is 
the closed ball in ~ a  of radius r centered at x. Therefore the measurability 
of S,. with respect to the product a-field along with Fubini's theorem (ref. 4, 
p. 240) and the addition and subtraction of terms gives 

c,.(,; Xo)-c(,-)= I ~,,:o(s:)~,,-:o(dx) - I"(s:),,(d.,-) 

A. 0 - -  . XO . _ _  

= I ~,,, (8.(x))~,,, (a.~)fF,(~,.(x))~,(a.,-) 

x 0  = [m~~ - I t ( B , ( x ) ) ]  U,, (dx) (66) 

+I/,(B,(x))~,~,~ (67) 

Fibini's theorem also yields it(B,(x))eL~(i.t). Therefore the pomtwise 
ergodic theorem (ref. 2, p. 13] implies that the term in (67) goes to zero as 
n ~ ~ a.s. ft. one has for the term in (66), as 

f -X'O m . -v0  Ira, (B,.(.x)) -~ (~ , ( x ) ) l  m, (d.x) 

~< sup ImT(~,(x)) -~(~(x))l 
.v 
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The closed balls in 9t d with respect to the "max" metric take the form 

B~(x)=[xj-r,x I+r]x[x  z-r ,x,_+r]x. . .  X[Xd--r, xd+r] 

where x = (x~, x,_ ..... Xd). Krickeberg ~ ~4~ has proven the uniform convergence 
in ~d  of Cartesian products of connected real sets, of which these balls are 
a subfamily. His argument uses a theorem due to Gaenssler r which 
assumes i.i.d, observations, but only in order to use the strong law of large 
numbers. One may substitute the pointwise ergodic theorem in place of the 
strong law of large numbers; hence the conclusion of Krickeberg's result 
holds under the assumptions of this theorem. Therefore 

lim sup l,.~;~ --,"(gr(X))l = 0 (68) 

a.s.p. 
It follows from the above argument that C,,(r; Xo) converges to C(r) as 

n-~ m a.s. It for each r. This same argument works with open balls to give 
convergence of C,,(r- ,  Xo) to C ( r - )  a.s. r for each r. This completes the 
proof. 

Proof  o f  Theorem 2. It suffices to note that the pointwise ergodic 
theorem (ref. 2, p. 13) along with the measureability of h imply that 

cOO lim m,, h - I ( B ' r ( y ) ) = m h - l ( B ' r ( y )  ) (69) 
I t  ~ ,:rJ 

a.s.  m,  where B ' , . ( y ) = { y ' r  Consequently, the proof of 
Theorem 1 carries over with /l and /~;~~ replaced by mh -~ and m~,~176 -~, 
respectively. 

Proof  o f  Theorem 3. The pointwise ergodic theorem (ref. 2, p. 13) 
gives Ft;]~ converges to/.t(A) as 11 ~ oo a.s. II for any Borel set A. In a 
separable metric space this implies that IG] ~ converges weakly to ~ as n ~ 
a.s. ~l (ref. 16, p. 53). Again, in a separable metric space the weak con- 
vergence of p;]~ to/.t a.s. p implies that .,-0 - -,'0 p,, :t�91 converges weakly to p x ~L 
as n ~  ov a.s. p (ref. 3, p. 21). This, in turn, implies for a n y f [ X •  91 
which is bounded and continuous almost everywhere p x ll that 

lim [ f  f(z)r ~ x,u~~ I f ( z ) p  xr = 0  (70) 

a.s. Ic The theorem follows immediately from the fact that the indicator of 
SrIs, is bounded and continuous almost everywhere, p x p  if r is a con- 
tinuity point of C(r). 
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